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[1] In a 19-year twin experiment for the Red-Arkansas river basin we assimilate synthetic
surface soil moisture retrievals into the NASA Catchment land surface model. We
demonstrate how poorly specified model and observation error parameters affect the
quality of the assimilation products. In particular, soil moisture estimates from data
assimilation are sensitive to observation and model error variances and, for very poor input
error parameters, may even be worse than model estimates without data assimilation.
Estimates of surface heat fluxes and runoff are at best marginally improved through the
assimilation of surface soil moisture and tend to have large errors when the assimilation
system operates with poor input error parameters. We present a computationally
affordable, adaptive assimilation system that continually adjusts model and observation
error parameters in response to internal diagnostics. The adaptive filter can identify model
and observation error variances and provide generally improved assimilation estimates
when compared to the non-adaptive system.
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1. Introduction

[2] In the past decade, land data assimilation has been a
very active field of research. Assimilated observations
include satellite retrievals of surface soil moisture, snow
water equivalent, snow cover area, and land surface tem-
perature [e.g., Andreadis and Lettenmaier, 2005; Bosilovich
et al., 2007; Dong et al., 2007; Drusch, 2007; Reichle et al.,
2007; Slater and Clark, 2006; Van Den Hurk et al., 2002].
The basic tenet of data assimilation is to combine the
complementary information from measurements and models
of the land surface into a superior estimate of the geophys-
ical fields of interest. In doing so, land data assimilation
systems interpolate and extrapolate the observations and
provide complete estimates at the scales required by the
application, both in time and in the spatial dimensions. Land
data assimilation systems thereby organize the observational
information into physically consistent estimates of the
variables of relevance to data users.
[3] The optimal combination of the measurements with

the model information rests on the consideration of the
respective uncertainties of each. At times and locations for
which highly accurate observations are available, the as-
similation estimates will be close to these observations. At
times and locations that are not observed (or for which

quality control rejected the observation), the assimilation
estimates will draw close to the model solution, but will
nonetheless be subject to the influence of observations in
spatial or temporal proximity of the location of interest.
[4] A key problem in the application of data assimilation

methods to land surface problems is the fact that the model
and the observational uncertainties themselves are poorly
known. It is generally difficult to characterize accurately
even basic error information such as the magnitude of the
model and observation error variances, let alone spatial,
temporal, and cross-correlations and higher order moments.
This is a serious problem because data assimilation systems
operating with poor estimates of input uncertainties may
very well produce degraded estimates of land surface
conditions when compared with the model estimates or
the observations alone [Reichle and Koster, 2002; Crow
and Van Loon, 2006; Durand and Margulis, 2008].
[5] Careful estimation of the model and observation error

parameters outside of the data assimilation system is one
common approach to alleviate the problem and a necessary
first step for any data assimilation application. However, it
is typically difficult to obtain a sufficient amount of inde-
pendent information for such off-line calibration. Further-
more, the true error parameters in the cycling assimilation
system may well be different from those in the off-line
calibration and may be changing with time. It is sometimes
possible to calibrate the input error parameters by conducting
a suite of assimilation integrations with various sets of input
error parameters and then picking the parameter set associ-
ated with the best-performing assimilation experiment (see
for example Figure 3 by Reichle et al. [2002b]). (Note that
this strategy is occasionally called ‘‘adaptive’’ filtering.) It is,
however, not computationally feasible for large applications.
[6] Adaptive assimilation approaches have been devel-

oped that estimate the model and observation error param-
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eters within the cycling assimilation system based on
information from internal diagnostics such as the observa-
tions-minus-forecast residuals (or innovations) [Mehra,
1970; Gelb, 1974; Dee et al., 1985; Moghaddamjoo and
Kirlin, 1993]. Most theoretical developments for adaptive
tuning are based on linear systems with Gaussian errors that
operate under stationary conditions. Gelb [1974; p. 320]
summarizes eloquently that ‘‘in practice [the optimal
approaches] may not work as well as theory would predict;
other more heuristically motivated approaches may be both
computationally simpler and more effective.’’ Applications
of adaptive methods in atmospheric data assimilation typ-
ically follow a covariance matching approach [Dee, 1995;
Dee and da Silva, 1999] and have been used in ensemble
data assimilation [Mitchell and Houtekamer, 2000;
Anderson, 2007].
[7] In this paper we modify the adaptive approach of Dee

[1995] for soil moisture data assimilation. In a 19-year twin
experiment over the Red-Arkansas river basin we first
demonstrate how poor choices of model and observation
error parameters affect the quality of the assimilation
products and then show how an adaptive strategy can be
employed to mitigate the problem. Section 2 gives an
overview of the data assimilation approach and the adaptive
strategy used here. In section 3 we describe the experiment
setup. Section 4 gives results about the sensitivity of the
assimilation estimates to input error parameters and the
performance of the adaptive filter. A summary and con-
clusions are given in section 5.

2. Data Assimilation and Adaptive Filtering

[8] In a data assimilation system, the model-generated
soil moisture is corrected toward the observational estimate,
with the degree of correction determined by the levels of
error associated with each. In most assimilation methods,
only the covariance information of the model and observa-
tion errors is used under the assumption that errors are
Gaussian. Sequential data assimilation algorithms known as
Kalman filters [Gelb, 1974] explicitly propagate error
covariance information from one update time to the next,
subject to possibly uncertain model dynamics, and produce
estimates of the uncertainty in the assimilation products.
Adaptive filtering approaches are designed to estimate the
input uncertainties along with the geophysical quantity of
interest in the cycling assimilation system.

2.1. The Ensemble Kalman Filter

[9] In this paper we use the ensemble Kalman filter
(EnKF), aMonte-Carlo variant of the Kalman filter [Evensen,
2003]. The idea behind the EnKF is that a small ensemble of
model trajectories captures the relevant parts of the error
structure. Each member of the ensemble experiences per-
turbed instances of the observed forcing fields (representing
errors in the forcing data) and is also subject to randomly
generated noise that is added to the model parameters and
prognostic variables (representing errors in model physics
and parameters). The error covariance matrices that are
required for the filter update can then be diagnosed from
the spread of the ensemble at the update time. The EnKF is
flexible in its treatment of errors in model dynamics and
parameters. It is also very suitable for modestly nonlinear
problems and has become a popular choice for land data

assimilation [Andreadis and Lettenmaier, 2005; Durand and
Margulis, 2008; Kumar et al., 2007; Pan and Wood, 2006;
Reichle et al., 2002a, 2002b; Zhou et al., 2006].
[10] The EnKF works sequentially by performing in turn

a model forecast and a filter update. Formally, the forecast
step for ensemble member i can be written as

x�t;i ¼ fðxþt�1;i; qt;iÞ ð1Þ

where xt,i
� and xt�1,i

+ are the forecast (denoted with –) and
analysis (denoted with +) state vectors at times t and t�1,
respectively. The model error (or perturbation vector) is
denoted with qt,i and its covariance with Qt. The filter
update produces the analyzed state vector xt,i

+ at time t and
can be written as

xþt;i ¼ x�t;i þ Kt ðyt;i � Ht x
�
t;iÞ ð2Þ

where yt,i denotes the observation vector (suitably per-
turbed) and Ht is the observation operator (which is
assumed linear for ease of notation, although this require-
ment can be relaxed). The Kalman gain matrix Kt is given
by

Kt ¼ Pt H
T
t ðHt Pt H

T
t þ RtÞ

�1 ð3Þ

where Pt is the forecast error covariance (diagnosed from
the ensemble xt,i

�), Rt is the observation error covariance,
and superscript T denotes the matrix transpose. Simply put,
the Kalman gain Kt represents the relative weights given to
the model forecast and the observations based on their
respective uncertainties, along with the error correlations
between different elements of the state vector. If the system
is linear, if its model and observation error characteristics
satisfy certain assumptions (including Gaussian, white, and
uncorrelated noise), and if the input error parameters are
correctly specified, the Kalman gain of equation (3) is
optimal in the sense of minimum estimation error variance.
Unfortunately, these optimal conditions are never simulta-
neously met in land data assimilation applications. Our
focus in this paper is on the accurate specification of the
input error variances.

2.2. The Adaptive EnKF

[11] The central idea behind adaptive filtering methods is
that internal diagnostics of the assimilation system should
be consistent with the values that are expected from input
parameters provided to the data assimilation system. The
most commonly used diagnostics for adaptive filtering are
based on the observation-minus-forecast residuals or inno-
vations (computed here as vt � E{yt,i – Ht xt,i

�}, where E{�}
is the ensemble mean operator). For a linear system oper-
ating under optimal conditions, the lagged innovations
covariance is

E½vt vTt�k	 ¼ dk;0 ðHtPtH
T
t þ RtÞ ð4Þ

where E[�] is the expectation operator and dk,0 is the
Kronecker delta. Equation (4) implies that the innovations
sequence is uncorrelated in time and that its covariance is
equal to the sum of the forecast error covariance Ht Pt Ht

T
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(in observation space) and the observation error covariance
Rt. Now recall that the forecast error covariance P depends
on the model error covariance Q. If the innovations show
less spread than expected, the input error covariances (Q
and/or R) are too large, and vice versa. Such information
can be used for adaptive tuning of Q and/or R.
[12] Alternative diagnostics are based on the analysis

departures wt = E{yt,i – Ht xt,i
+ } and the (observation space)

analysis increments ut = E{Ht(xt,i
+ – xt,i

�)}. For linear systems
operating under optimal conditions we have [Desroziers et
al., 2005]

E½ut vTt 	 ¼ HtPtH
T
t ð5Þ

E½wt v
T
t 	 ¼ Rt ð6Þ

Equations (5) and (6) are attractive because they suggest a
simple way of estimating the model and observation error
covariances separately. This approach is the basis of the
proof-of-concept example of Desroziers et al. [2005] and it
is also the approach employed here. Good results with this
approach have also been reported by other groups (Eugenia
Kalnay, personal communication, 2007).

[13] A flowchart of the adaptive EnKF algorithm is
provided in Figure 1. After appropriate initialization, the
adaptive EnKF starts with a regular EnKF forecast and
update step (equations (1)–(3)), along with the computation
of the innovations, the analysis departures, and the analysis
increments. The adaptive module follows thereafter. In our
implementation, the adaptive filter is estimating the ratios of
the true input error variances and their initial values, that is
we are ultimately trying to determine (separately for each
location) the scalar factors aQ = trace(Qtrue)/trace(Qt = 0)
and aR = trace(Rtrue)/trace(Rt = 0), which will henceforth
be referred to as ‘‘adaptive tuning factors.’’ To this end,
the adaptive module starts with estimating the terms in
equations (5) and (6). In atmospheric data assimilation
systems, error characteristics vary smoothly and at fairly
large horizontal scales when compared to the size of the
computational units. Therefore adaptive algorithms in atmo-
spheric assimilation systems typically compute the terms of
equations (5) and (6) by averaging across the domain (or
large parts of it). Because of the substantial heterogeneity of
the land surface, this approach is unlikely to work well for
soil moisture data assimilation. Instead, for each catchment
we compute the desired statistic from the relevant time series
for that single catchment (and thereby reduce equations (5)
and (6) to sets of scalar equations). The most recent estimate
of E[u vT], for instance, is approximated as an exponential
moving average, that is, at update time t we approximate
E[u vT] ffi MA[u vT]t, where the exponential moving average
is denoted with MA[�] and defined as MA[u vT]t � (1 – g)
MA[u vT]t�1 + g ut vt

T, with an ad-hoc choice of g = 0.02
for the experiments presented here. Similarly, we compute
time-filtered estimates of E[w vT], H P HT, and R (Figure 1a).
[14] Next, we determine the ratio of actual covariances

and expected covariances, that is we compute the ratios fQ =
b MA[u vT]t/MA[H P HT]t and fR = MA[w vT]t/MA[R]t
(Figure 1b; the factor b will be explained below). We then
use these ratios to update the adaptive tuning factors aQ and
aR based on the idea (expressed in equations (5) and (6))
that these ratios should be close to unity for correct input
error parameters. Because the moving average estimates of
the terms in equations (5) and (6) are very noisy even after
temporal smoothing, it is necessary to further restrict the
ratios fQ and fR to the interval [(1 + d)�1, (1 + d)], with d =
0.005 used here (Figure 1c). In practice, this means that aQ

and aR are decreased or increased by only a very small
fraction at each update time, no matter how far the original
ratios fQ and fR are from unity. While slowing down
convergence considerably, such a restriction is necessary
for stabilizing the algorithm. In addition, we restrict aQ and
aR to the interval [0.01, 100] (Figure 1d). Finally, we derive
the latest estimates of the true Q and R by scaling the
original input model parameters Qt=0 and Rt=0 with the latest
estimates of aQ and aR, respectively (Figure 1e). Note that
for lognormally distributed, multiplicative perturbations
(such as are applied to precipitation and shortwave radiation
forcing, section 3.2), the covariance scaling is applied to the
corresponding normal deviates. The ‘‘scaled’’ lognormal
perturbations are computed by transforming the scaled
normal deviates into lognormal space. Note also that mul-
tiplicative perturbations (as opposed to additive perturba-
tions) exacerbate the noisy character of the ratios fQ and fR.

Figure 1. Adaptive EnKF algorithm. Initial guesses for
model and observation error covariances are denoted with
Q0 and R0, respectively. Shaded boxes indicate the adaptive
module of the EnKF. ‘‘MA[�]’’ denotes exponential moving
average, E{�} denotes ensemble mean. See text for symbols
and further discussion.
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[15] It is important to note that in our EnKF-based system
we are interested in scaling the model error covariance Q,
and not the forecast error covariance P [e.g., Dee, 1995;
Desroziers et al., 2005]. Our approach therefore makes a
linearity assumption between P and Q that is only valid
approximately. In particular, we found that the ratio fQ
(Figure 1b) is systematically underestimated for perfect
input error parameters unless an empirical factor b is
introduced. This factor can be determined in a twin exper-
iment that uses perfect input error parameters. If the factor b
is omitted, the adaptive algorithm tends to produce slightly
worse results (when compared to the non-adaptive algo-
rithm) in the case of correct initial input error parameters. It
is, however, highly unlikely that the initial guess of input
error parameters is already perfect, and the adaptive filter
does yield significant improvements for most choices of
input error parameters even when the factor b is omitted. It
must also be noted that theoretically, the adaptive algorithm
relies on stationary conditions, and Qtrue and Rtrue should
not vary with time. Nevertheless, slow variations of Qtrue

and Rtrue on seasonal timescales and longer can be handled
by the algorithm without significant loss of performance.

3. Experiment Description

[16] We use a twin experiment to test the impact of
erroneously specified model and observation error parame-
ters and the performance of our adaptive filter. First, we
conduct an ensemble integration of the land surface model
with a known set of model errors (perturbations) and
without data assimilation. A randomly chosen member from
this reference ensemble integration serves as the ‘‘truth’’. A
second model integration, this time without perturbations,
represents the best model estimate of the truth without the
benefit of data assimilation and is called the ‘‘open loop’’
integration. Next, synthetic retrieval data sets are generated
from the true surface soil moisture and are subsequently
assimilated back into the land surface model with various
sets of (intentionally wrong) input error parameters using
both the standard EnKF and the adaptive EnKF. Finally, the
resulting assimilation estimates are compared against the
truth data set. In the remainder of this section, we provide
more detailed descriptions of the land surface model, the
synthetic retrievals, and the data assimilation parameters.

3.1. Land Surface Model and Observations

[17] Model soil moisture is obtained from integrations of
the NASA Catchment Land Surface Model [hereinafter
Catchment model; Koster et al., 2000]. The Red-Arkansas
river basin in the United States was chosen as the experi-
ment domain because it exhibits a range of conditions that
favor or prohibit soil moisture retrieval from space. The
assimilation experiments cover the (almost) 19-year period
from 1 October 1981 through 1 September 2000. The
time step for the model integration is 20 min. The meteo-
rological forcing data for the Catchment model were pro-
vided at hourly time steps and at 1 km resolution [Sharif et
al., 2007]. Forcing data from 1 April 1980 to 1 October
1981 were used to spin up the model through repeated
integrations.
[18] The Catchment model’s basic computational unit

is the hydrological catchment (or watershed). The Red-
Arkansas river basin is divided into 308 catchments

(excluding inland water) with a median linear scale of
35 km (ranging from 12 km to 96 km). In each catchment,
the vertical profile of soil moisture is determined by the
equilibrium soil moisture profile from the surface to the
water table (defined by a balance of gravity and capillary
forces) and by two additional variables that describe devia-
tions from the equilibrium profile in a 1 m root zone layer
and in a 2 cm surface layer, respectively. Unlike traditional,
layer-based models, the Catchment model includes an
explicit treatment of the spatial variation of soil water and
water table depth within each hydrological catchment based
on the statistics of the catchment topography.
[19] Synthetic retrievals of 2 cm surface soil moisture

were obtained once daily from the truth integration after
applying a space-time mask based on the expected avail-
ability of retrievals from an L-band satellite sensor [Crow et
al., 2005]. Three separate synthetic retrieval data sets were
simulated by adding white noise (with standard deviations
of 0.02, 0.05, and 0.08 m3m�3) to mimic retrieval errors.
Earlier studies found large differences between the temporal
moments of satellite and model soil moisture [Reichle and
Koster, 2004; Drusch et al., 2005]. Such biases are avoided
by design in our twin experiment. In applications of the
adaptive algorithm to satellite observations, any biases will
have to be addressed with suitable methods such as clima-
tological rescaling [Reichle and Koster, 2004] or bias
estimation [De Lannoy et al., 2007].

3.2. Data Assimilation Setup

[20] The reference (‘‘truth’’) model error parameters are
based on our experience with the assimilation of soil
moisture retrievals from the Advanced Scanning Multichan-
nel Radiometer for the Earth Observing System (AMSR-E)
[Reichle et al., 2007] and are summarized in Table 1. Zero-
mean, normally distributed additive perturbations were
applied to the downward longwave radiation forcing and
to two Catchment model prognostic variables related to soil
moisture (catchment deficit and surface excess). Lognor-
mally distributed multiplicative perturbations (with mean 1)
were applied to the precipitation and the downward short-
wave radiation forcing. Time series correlations were im-
posed via a first-order auto-regressive model (AR(1)) for all
perturbation fields. In this study we used a one-dimensional
EnKF [Reichle and Koster, 2003] and therefore did not use
spatially correlated perturbation fields. Cross-correlations
were only imposed on perturbations of the precipitation and
radiation fields.
[21] A randomly chosen member from an ensemble

integration with the reference model error parameters
(Table 1) serves as the synthetic truth. The open loop
integration (no perturbations, no assimilation) has a surface
soil moisture RMSE of 0.035 m3m�3 (volumetric) and a
bias of �0.006 m3m�3. Throughout the manuscript, biases
and RMS errors are computed relative to the truth data and
averaged over the 19-year experiment period and the entire
domain after applying the same space-time mask to the
assimilation estimates that was used in the generation of the
synthetic retrievals. The mask is used to discount the impact
of times and locations when data were not assimilated with
the one-dimensional filter employed here.
[22] Starting from the true model error parameters of

Table 1, we defined five additional sets of input model
error parameters for use in the assimilation integrations
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(Table 2). The six sets of model error parameters differ only
in the strength of the perturbations (model error variances)
and otherwise share the same characteristics in terms of the
sources of error (which forcing fields and model states are
uncertain) and in the temporal and cross-correlation struc-
ture. Moreover, the relative strength of perturbations to each
field within all parameter sets is similar (though not iden-
tical). Using the different sets of model error parameters in
12-member ensemble integrations (without assimilation)
leads to ensemble spreads in surface soil moisture ranging
from 0.005 m3m�3 to 0.093 m3m�3 (Table 3). By design,
the ensemble spread underestimates the actual error of the
open loop integration (0.035 m3m�3) for model error
parameter sets A and B and overestimates it for parameter
sets D, E, and F.
[23] For comparison, the RMS errors of the ensemble

mean surface soil moisture from the ensemble integrations
(without assimilation) range from 0.030m3m�3 to 0.099m3m�3

(Table 3). Ideally, the actual errors of all ensemble integra-
tions would match the open loop error (0.035 m3m�3)
because the perturbations are designed to be zero-mean
to the extent possible given system non-linearities and
computational constraints. This is the case (to within
0.005 m3m�3) for parameter sets A, B, C, and D. For
parameter sets E and F, the perturbations are so strong that
biases become significant (Table 3). Such biases are an
unavoidable consequence of non-linearities in the system,
such as the upper and lower bounds of soil moisture. Note
that the ensemble integration with the true model error
parameter set C performs slightly better than the open loop.
Its ensemble mean could be used instead of the open loop
integration. The differences are minor, though, and do not
affect our results and general conclusions.
[24] Next, we define five input observation error standard

deviations (0.001; 0.02; 0.05; 0.08; and 0.11 m3m�3) that
are used in combination with the six sets of input model
error parameters (Table 2) in a suite of data assimilation
experiments. For the retrieval data set with a true observa-

tion error standard deviation of 0.05 m3m�3 (section 3.3) we
performed 30 data assimilation experiments with the non-
adaptive EnKF (and another 30 with the adaptive EnKF) by
combining each of the five input observation error standard
deviations (listed above) with each of the six sets of input
model error parameters listed in Table 2. These experiments
will be the focus of the remainder of the paper. Each of
these 60 data assimilation experiments is over the 19-year
experiment period and the entire Red-Arkansas domain and
uses 12 ensemble members. We also performed an addi-
tional suite of 80 experiments in which we assimilated the
retrieval data sets with true observation error standard
deviations of 0.02 and 0.08 m3m�3 using select combina-
tions of the input model and observation error parameters.
The results from these additional experiments (not shown)
are qualitatively very similar and support the same general
conclusions.

4. Results

4.1. Impact of Input Error Parameters on Assimilation
Estimates

[25] Each data assimilation experiment with the standard
EnKF has a unique set of input error parameters (Table 2
and section 3) that leads to a unique pair of scalars: the
(space and time) average forecast error variance (P0) and the
input observation error variance (R0). We can thus plot two-
dimensional surfaces of filter performance as a function of
sqrt(P0) and sqrt(R0). Figure 2a, for example, shows one
such surface with the performance measure being the
RMSE of surface soil moisture estimates from the (non-
adaptive) EnKF. Each of the 30 plus signs in the figure
indicates the performance of a 19-year assimilation integra-
tion over the entire Red-Arkansas domain. For example, the
experiments that use the true model error parameters (set
‘‘C’’ in Table 2) have a forecast error standard deviation of
about 0.02 m3m�3 in data assimilation mode. (In each
assimilation experiment, the value of the forecast error

Table 1. Parameters for Perturbations to Meteorological Forcing Inputs and Catchment Model Prognostic Variables in the

Truth Integration

Perturbation
Additive (A)

or Multiplicative (M)?
Standard
Deviation

AR(1) Time Series
Correlation Scale

Cross-Correlation With
Perturbations in SW

Cross-Correlation With
Perturbations in LW

Precipitation M 0.5 1 day �0.8 0.5
Downward shortwave (SW) M 0.3 1 day n/a �0.5
Downward longwave (LW) A 50 W m�2 1 day n/a n/a
Catchment deficit A 0.05 mm 12 h n/a n/a
Surface excess A 0.02 mm 12 h n/a n/a

Table 2. Standard Deviations for Perturbations to Meteorological Forcing Inputs and Catchment Model Prognostic Variables in the

Assimilation Integrationsa

A B C (‘‘true’’) D E F

Precipitation 0.05 0.2 0.5 0.75 0.875 1.0
Downward shortwave 0.03 0.1 0.3 0.5 0.75 1.0
Downward longwave 5 W m�2 25 W m�2 50 W m�2 100 W m�2 150 W m�2 200 W m�2

Catchment deficit 0.005 mm 0.02 mm 0.05 mm 0.1 mm 0.3 mm 0.5 mm
Surface excess 0.002 mm 0.01 mm 0.02 mm 0.04 mm 0.12 mm 0.2 mm

aAll other parameters as in Table 1. Parameter set C is identical to the true error parameters of Table 1.
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variance depends primarily on the input model error param-
eter set (Table 2) and varies slightly with the input obser-
vation error variance. Note that the ensemble spread listed
in Table 3 is without data assimilation.)
[26] Figure 2a illustrates that the estimation error in

surface soil moisture is smallest near the experiment that
uses the true model and observation error inputs. The

minimum estimation error is around 0.02 m3m�3, down
from the open loop value of 0.035 m3m�3. The estimation
error increases as the input error parameters deviate from
their true values. Generally, the estimation errors in surface
soil moisture are quite sensitive to both the assumed model
and the assumed observation error variances. Figure 2a also
indicates where the estimation error surface intersects the

Table 3. Ensemble Spread (Ensemble Standard Deviation Averaged Over Experiment Period and Domain), RMSE, and Bias of Surface

Soil Moisture for the Open Loop (No Perturbations) and for Ensemble Integrations (No Assimilation) With the Model Error Parameter

Sets A Through F Defined in Table 2a

Open loop A B C (‘‘true’’) D E F

Ensemble spread n/a 0.005 0.017 0.031 0.045 0.077 0.093
RMSE 0.035 0.034 0.032 0.030 0.038 0.075 0.099
Bias �0.006 �0.006 �0.006 �0.001 0.017 0.050 0.065

aUnits are m3m�3.

Figure 2. RMSE of standard EnKF estimates for (a) surface and (d) root zone moisture as a function of
the (ordinate) time and space average forecast and (abscissa) input observation error standard deviations
of surface soil moisture. Similarly, RMSE of adaptive EnKF estimates for (b) surface and (e) root zone
soil moisture. RMSE difference plots (adaptive minus standard EnKF) for (c) surface and (f) root zone
soil moisture. Units are volumetric percent (m3 m�3). Each plus sign indicates the result of a 19-year
assimilation integration over the entire Red-Arkansas domain. The circled plus sign indicates the
experiment that uses the true error parameters in the data assimilation system. Thick gray lines indicate
RMSE of open loop (no assimilation) integration.
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open loop error. For grossly overestimated model and
observation error variances, the assimilation estimates of
surface soil moisture are in fact slightly worse than the open
loop estimates.
[27] Figure 2d shows the same for the estimation error in

root zone soil moisture. Qualitatively, the result is similar to
that for surface soil moisture, that is, (i) the minimum
estimation error (�0.01 m3m�3) is near the experiment with
the true input error parameters, (ii) the estimation error
gradually increases as the input error parameters deviate
from their true values, and (iii) there is sensitivity to both
the input model and observation error variances. For root
zone soil moisture, however, the assimilation estimates are
somewhat worse than the open loop error of 0.02 m3m�3

not only for gross overestimation of the input error varian-
ces but also for severe underestimation of the observation
error variance.
[28] Figures 3a, 3d, and 3g show the performance of the

non-adaptive EnKF for the latent heat flux, the sensible heat
flux, and the total runoff, respectively. Similar to the
estimation errors in soil moisture, the estimation errors in
the fluxes are smallest near the experiment that uses the true
input error parameters. The assimilation estimates, however,
improve only modestly over the open loop integration. The
minimum estimation errors are 24 Wm�2, 19 Wm�2, and
0.28 mm d�1 for latent heat flux, sensible heat flux, and
runoff, respectively, compared with open loop errors of 27
Wm�2, 22 Wm�2, and 0.31 mm d�1, respectively. Poorly
specified input error parameters easily lead to assimilation
estimates of fluxes that are worse than the model estimates
without data assimilation. This is particularly true for runoff
estimates. For overestimated model error variances and in
particular for severely underestimated observation error
variance, the runoff estimates get dramatically worse.
[29] The filter performance for the surface heat fluxes is

fairly insensitive to the assumed observation error variance
but varies strongly with the assumed model error variance
because the relatively small benefit bestowed on the flux
estimates through the assimilation of surface soil moisture
retrievals is canceled out by the biases that are introduced
through the unavoidable non-linearities in the system. In
other words, inherent non-linearities in the ensemble gen-
eration explain most of the sensitivity of the flux estimates
to the input model error variance.
[30] Finally, we evaluate the performance of the EnKF in

terms of its internal diagnostics and how these diagnostics
depart from their optimal values (in a linear system) or
correct values (with respect to the truth). We generally refer
to these differences as ‘‘misfits’’. For the ‘‘innovations
misfit’’ we first compute normalized innovations by divid-
ing the filter innovations with their expected standard
deviation (see equation (4)). The ‘‘innovations misfit’’ is
then defined as the spatial RMS difference between the
(temporal) sample variance of the normalized innovations
and its expected value of 1. We also evaluate the filter’s
estimates of the observation and analysis error standard
deviations. The former is obviously specified as an input
parameter (and adjusted in the adaptive filter). The latter is
simply the ensemble standard deviation of surface soil
moisture after the Kalman update. Both should approximate
the actual RMS errors. We measure errors in these uncer-
tainty estimates as the RMS difference between the filter’s

uncertainty estimates and the actual RMS errors (with
respect to the truth) of the observations and the assimilation
estimates, respectively.
[31] Figure 4a shows the logarithm (base 10) of the inno-

vations misfit for the non-adaptive EnKF experiments
similar to the surface plots of Figures 2 and 3. The mini-
mum innovations misfit clearly coincides with the optimal
model and observation error parameters. The innovations
misfit for the corresponding experiment is 0.05(= 10�1.3)
(dimensionless). Extreme values of the innovations misfit
are seen when the observation error standard deviation is
severely underestimated. Generally, the innovations misfit is
sensitive to the input model and observation error parame-
ters. Figure 4d (trivially) shows the (designed) error in the
filter’s estimate of the observation error standard deviation.
The error in the filter’s estimate of the output uncertainty
(or analysis error) in surface soil moisture is shown in
Figure 4g. For input error parameters close to the true
values, the filter estimate of the analysis error standard
deviation is within 0.003 m3 m�3 of the actual RMS error.
For severely underestimated model or observation error
standard deviations the filter produces very poor estimates
of the uncertainty in its output that are as far away as
0.03 m3 m�3 from the actual RMS errors. (Note that the
misfit in the analysis error for each assimilation experiment
is computed from the actual errors for that experiment.)
Figure 4g indicates that poorly specified model error
parameters lead not only to poor estimates of the fields
themselves but also to poor estimates of their uncertainty.

4.2. Adaptive Filtering

[32] As described above, all data assimilation experi-
ments were also conducted with the adaptive EnKF. Before
discussing the performance of the adaptive filter in terms of
RMS errors, it is instructive to examine the adaptive tuning
factors aQ and aR that are estimated by the adaptive filter.
Figure 5 shows that the estimated aQ and aR converge to
stable values. Since in our synthetic experiment we know
the true input error parameters, we can determine the ‘‘true’’
aQ and aR for each case (also shown in Figure 5).
Generally, the adaptive algorithm is able to identify aR

quite successfully. Only in the case of severely underesti-
mated observation error does the estimated aR not converge
toward the true value of 2500 (outside the plotted range in
Figure 5), becauseaR is limited by the imposed cap (section 2).
Similarly, aQ is identified adequately by the adaptive
algorithm, albeit with less skill in the case of severely over-
or underestimated model error variance, where aQ is again
limited by the imposed cap. Increasing (or even eliminating)
these caps would presumably lead to improved results in the
extreme cases, but might lead to unforeseen problems in
other situations.
[33] The estimates of aQ and aR vary across the domain

(Figure 5), even though the experiment setup (with homo-
geneous true and assumed input error parameters) suggests
that they should not. The spatial variability is particularly
pronounced for estimates of aQ. There is no indication that
the spatial patterns of the aQ estimates (not shown) are
directly related to variations in soil type, vegetation char-
acteristics, or the climate across the domain. One reason for
the relatively greater difficulty in estimating the model error
variance is the non-linear relationship between model errors
(for example in precipitation or surface excess) and errors in
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the observed surface soil moisture. Moreover, the model
error characteristics used here (motivated by our experience
with satellite data assimilation) include non-linear (multi-
plicative) model errors with temporal correlations that

technically violate the assumptions of the EnKF. Such
violations contribute to the high level of noise in the
quantities that are used for estimating the adaptive tuning
factor aQ for the model error variance. Because the EnKF

Figure 3. RMSE of standard EnKF estimates for (a) latent heat flux, (d) sensible heat flux, and
(g) runoff. RMSE of adaptive EnKF estimates for (b) latent heat flux, (e) sensible heat flux, and (h) runoff.
RMSE difference plots (adaptive minus standard EnKF) for (c) latent heat flux, (f) sensible heat flux, and
(i) runoff. Latent and sensible heat fluxes are in units of (W m�2), runoff is in (mm d�1). Ordinate,
abscissa, plus signs, and gray lines as in Figure 2.
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Figure 4. Diagnostics of the standard EnKF: (a) log-10 of the normalized innovations misfit
(dimensionless), (d) the error in the filter estimate of the observation error standard deviation (m3m�3),
and (g) the error in the filter estimate of the analysis error standard deviation (m3m�3). Same diagnostics
but for the adaptive EnKF in (b), (e), and (h), respectively. Difference plots for same diagnostics
(adaptive minus standard EnKF) in (c), (f), and (i), respectively. Ordinate, abscisssa, and plus signs as in
Figure 2.
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assumptions are less severely violated in the case of the
observation error characteristics, it is generally easier to
estimate the observation error variance.
[34] The convergence timescales for aQ and aR are

typically on the order of a few years and are primarily
controlled by the parameter d (Figure 1b). A larger value for
d generally improves the speed of convergence but also
leads to noisier and oscillating estimates of aQ and aR later
on. Here, we use an empirical value of d = 0.005. Future
studies may show how d is related to the time it takes to
obtain robust error statistics, most importantly of precipita-
tion errors. Note also that generally, aR converges faster
than aQ for the same reasons that estimates of aR are less
spatially variable than estimates of aQ; observation error
characteristics are generally better behaved than model error
characteristics when it comes to violating EnKF assump-
tions. The slow convergence speed of the adaptive scheme
is clearly an undesirable feature and is hardly acceptable in
practice. A simple and affordable solution to the problem is

to assimilate a given data set into a given model several
times and each time use the final estimates of the input error
parameters as initial input error parameters in the next
assimilation integration. It should also be noted that in
operational systems even minor improvements, as are
realized before the adaptive filter converges, are valuable.
[35] Finally, it is interesting to note that during the initial

phase the adaptive algorithm appears to optimize the sum of
the model and observation error variances, and only later
distinguishes between the two components. This can be
seen in Figure 5, for example, in the panel for sqrt(R0) =
0.02 and sqrt(P0) = 0.0297 (third row, second column). In
this case, the input model error variances are overestimated
(with respect to the truth) while the observation error
variance is underestimated to a relatively larger degree.
The adaptive algorithm at first increases both the model
and the observation error variances until the observation
error variance is close to its true value. Only then does the
algorithm reduce the model error variance.

Figure 5. Monthly and area average estimates of (thick gray line) aQ and (solid black line) aR from the
adaptive EnKF. Thin gray and dashed black lines show (spatial) 10th and 90th percentiles of aQ and aR,
respectively. Gray plus signs and black crosses indicate ‘‘true’’ values of aQ and aR, respectively (see
text).
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[36] Let us now revisit Figures 2, 3, and 4 and examine
the skill of the adaptive filter estimates in terms of RMS
errors in the land surface fields. Again, the adaptive filter
uses evolving model and observation error variances. When
drawing the surface plots for the adaptive EnKF, however,
we use the forecast and observation error standard devia-
tions that correspond to the initial input error parameters
(and match those in the non-adaptive EnKF) on the ordinate
and the abscissa, respectively.
[37] Figures 2b and 2e show estimation errors in surface

and root zone soil moisture for the adaptive EnKF, and
Figures 2c and 2f show the corresponding RMSE difference
plots between the adaptive and the non-adaptive EnKF. It is
immediately obvious that the adaptive EnKF performs
better than or similar to the non-adaptive EnKF (in terms
of soil moisture) across almost the entire range of initial
model and observation error parameters. The improvements
facilitated by the adaptive tuning are generally commensu-
rate with the errors in the initial input model and observa-
tion error variances and lead to homogeneous skill in the
assimilation estimates, except for severely underestimated
observation error variance. In this case, the adaptive filter
performs worse than the non-adaptive version because the
cap on aR leads to poor estimates of model error variances
(Figure 5). Starting the adaptive filter with a conservative
(that is, larger) initial estimate of the observation error
variance offers an obvious solution that avoids the issue.
[38] Figures 3b, 3e, and 3h show estimation errors in the

latent heat flux, the sensible heat flux, and the total runoff
for the adaptive EnKF. Figures 3c, 3f, and 3i show the
corresponding RMSE differences between the adaptive and
the non-adaptive EnKF. The skill in flux estimates produced
by the adaptive filter is qualitatively similar to the skill in
soil moisture estimates. Generally, the adaptive tuning leads
to smaller errors in latent heat flux, sensible heat flux, and
runoff. The strong sensitivity of the estimation error to the
input model error variance is substantially decreased. As for
soil moisture, severe underestimation of the observation
error variance leads to substantially worse flux estimates.
Again, initializing the adaptive filter with a conservative
estimate of the observation error variance should avoid the
issue.
[39] Next, Figures 4b, 4e, and 4h assess the internal filter

diagnostics of the adaptive filter. By design, the innovations
misfit is greatly reduced for all data assimilation experi-
ments by the adaptive filter (Figure 4b). More interestingly,
the adaptive filter’s estimates of the observation error
standard deviations correspond far more closely to the
actual RMS errors of the observations than those of the
non-adaptive filter (Figure 4e). Improvements are seen even
if the input observation error standard deviation is much too
small. Finally, the adaptive filter produces better estimates
of the analysis error in surface soil moisture than the non-
adaptive filter when the input model error standard devia-
tions are either substantially too small or substantially too
large (Figure 4h). If, however, the initial input model error
variance is close to its true value, the adaptive filter
produces uncertainty estimates that are less reliable than
those of the non-adaptive EnKF. These results are consistent
with the difference in skill in the estimation of aQ and aR

(Figure 5). Generally, the adaptive filter estimates the

observation error variance quite successfully, but the esti-
mation of the model error and (consequently) analysis error
variances is more difficult.
[40] We tried several alternative adaptive tuning schemes,

but all variants performed no better than the version
described above. Among the alternatives were (i) an algo-
rithm based solely on the innovations covariance (equation (4)
with k = 0) and (ii) an algorithm based on the innovations
covariance and lag-1 correlation (equation (4) with k = 0 and
k = 1). Our approach for implementing the alternative
algorithms was similar to the one described above, that is
the alternative algorithms were also based on running
estimates of the relevant diagnostics and on nudging of
the observation and model error parameters such that the
diagnostics are closer to their ideal values. Note that
with approach (ii) the temporal decorrelation constraint
(equation (4) with k = 1) only implies a direction in which
observation and model error variances may be tuned [Crow
and Bolten, 2007], but it is not clear by how much. For
linear systems a closed-form solution exists to estimate the
exact input error parameters [Mehra, 1970]. We conducted
preliminary tests with this closed-form algorithm in a
simpler land modeling system with good results (not
shown). It is, however, difficult to implement such a
closed-form solution in our quasi-operational system, and
our choice of algorithm is motivated partly by the ease with
which it can be implemented. Note also that in our system
the innovations may not fully de-correlate anyway because
of temporal error correlations in the forcing fields.

5. Summary and Conclusions

[41] Input error parameters to land surface data assimila-
tion systems are difficult to determine and inherently
uncertain. Wrongly specified input error parameters typi-
cally lead to degraded assimilation estimates that may even
be worse than the model estimates or the observations
alone. Adaptive filtering methods have been developed that
try to estimate the model and observation error parameters
and thus improve the assimilation estimates. In this paper,
we investigated the impact of the input error parameters on
the performance of a soil moisture data assimilation system
in a 19-year twin experiment over the Red-Arkansas river
basin. We also implemented an adaptive EnKF (Figure 1)
and tested its performance.
[42] Our experiments clearly show that poorly specified

input error parameters negatively affect the assimilation
estimates of soil moisture, the surface fluxes, and runoff.
For soil moisture, a non-adaptive EnKF generally performs
well, even when obviously wrong input error parameters are
used, and produces assimilation estimates that are an
improvement over the open loop (no assimilation) estimates
(Figure 2). The assimilation estimates of soil moisture are
worse than the open loop estimates only when the model
error variance is severely overestimated or the observation
error variance is severely underestimated. Adaptive tuning
with our algorithm generally improves the soil moisture
estimates produced by the assimilation system, except when
the observation error variances are underestimated by sev-
eral orders of magnitude. Conservatively overestimating the
observation error standard deviation at the start of the
adaptive filter integration should avoid this problem.
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[43] Poorly specified input error parameters have a strong
impact on estimates of surface heat fluxes and runoff,
primarily because the benefit of assimilating surface soil
moisture observations for the estimation of these fluxes is
modest even with perfect input error parameters (Figure 3).
When the model error variance is overestimated, the large
perturbations result in biases (because of unavoidable non-
linearities in the system) that negatively impact the flux
estimates. The adaptive filter greatly alleviates the problem
and produces generally improved flux estimates. Finally, the
adaptive filter is quite successful in estimating the true
observation error variance (Figure 4). In the case of sub-
stantially over- or under-estimated model error variances,
the adaptive filter also produces improved uncertainty
estimates (for its surface soil moisture output) when com-
pared to the non-adaptive filter, but the analysis uncertainty
estimates from the adaptive filter are somewhat worse when
the initial choices for the model error variances are close to
the true error variances.
[44] The convergence timescales of the adaptive algo-

rithm are typically on the order of a few years and require
long data sets or repeated assimilation integrations before
stable estimates of model and observation error variances
can be reached (Figure 5). In operational systems, however,
even minor improvements, as are realized before the adap-
tive filter converges, are valuable.
[45] The experiments described here provide many

insights into the importance of choosing the correct input
error parameters for soil moisture data assimilation, in
particular in ensemble-based assimilation systems where
biases are easily introduced unwittingly. The experiments
were set up under favorable conditions. Our twin experi-
ments used the same land surface model for generating the
synthetic truth and for the assimilation. The filters, both the
adaptive and the non-adaptive EnKF, were provided with
perfect knowledge of which model states and forcing fields
are the main source of uncertainty. Temporal and cross-
correlation parameters were assumed perfectly known, and
the relative strength of the errors within each model error
parameter set was fairly similar. The remaining two main
degrees of freedom were the error variances in the soil
moisture observations and the corresponding model esti-
mates. Even so, the adaptive filter did not perform optimally
or flawlessly because of non-linearities inherent in the
system and because computational constraints impose limits
on the implementation of the adaptive tuning scheme.
[46] In future, the adaptive filter could be improved

through further tuning of its parameters (in particular, b,
g, and d of Figure 1). Moreover, the current adaptive
algorithm produces model error variance estimates with a
high degree of spatial variability. Localized spatial averag-
ing of the diagnostics within the adaptive algorithm can
perhaps be used to improve the performance of the filter.
Including additional constraints such as the temporal decor-
relation of the innovations sequence (equation (4) with k > 0)
might also help, but it is not clear how this can be done in our
system. The algorithm will also need to be tested with
satellite retrievals of soil moisture rather than in a perfectly
controlled twin experiment. Nevertheless, the experiments
described here demonstrate the significant potential benefits
of adaptive filtering for land data assimilation and are a

necessary initial step into an area of land data assimilation
research that has received little attention to date.
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